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DETERMINISTIC STRATEGY AND STOCHASTIC PROGRAMS™

N.N. KRASOVSKII

The problem of the control which minimizes the guaranteed result /2/ is
solved by the method of stochastic synthesis /1/. The object is described
by a linear differential equation. The quality indicator is composed of
the phase vector at the end of the process and of integrals of samples

of the control and dynamic interference. The information element at the
current instant of time t is composed of the signal representing the actual
motion with the error and of the control history up to the instant t.

The information error, the dynamic interference, and the control are
constrained by geometric limitations. This paper is related to papers

/3=17/.
1. Statement of the problem. Consider the z-object defined by the differential
eguation . .
F=A@Mz=BOu+C@w t,<t<o (1.1)

where z, u, v are column vectors of the matrix function 4 (¢), B (t), C (t) which are continuous.
The control u and the disturbances v are constrained by limitations u& P,ve @, where P
and Q are compacta., Information about the initial and current states zl{] =z, and s ltl. t >
t, of the phase vector z are defined by the vectors =z,* =z, + Ag* and g¢* [tl = K (t) 2 [t] —
Ag* (1), o <t < 9®, where K (1) is the continuous metric function, and the distortions Aury*
and Ag* [t] are constrained by the limitations Ar,* = R and Ag¢* [t] = § (1), where R and S ()
are compacta. The sets § () are continuous in t in the Hausdorff metric. We denote func-
tions of time as follows zlf, [-J*) = {z 1], 1, Tt <{1*), 2, [ Je*]l = [« [1), t, <1 X %], etc.
The set

Yl = {z*, ¢* (o [-]1), (i 1-1 2]} (1.2)

will be used as the information transform of Y [1].

Piecewise-continuous samples ¢* lt1] and measurable samples u[t] in (1.2) are admissible
Moreover the admissible functions ¢* [t} and u (7] are connected by the following condition.
Let X [r, v] be the fundamental matrix of sclutions of the eguation dr'dt = A4 (1) r. We put

T

r[T]=Q*[T]—1\'tT)S.‘i|1, v} B (v)u(v]dy (1.3)
i
The vector z, and the measurable function v ({11} = {v1]l = Q. 1, <11} that satisfy
the imbedding
(" —x) = R (1.4)
(r|t] — K [X[1 1o ag — (1.5)
T

S.\'[L VCvpevldvy = S, LT T
i

must exist. i

We shall call the strategy w (-) the function u (1, Y, €) defined for t="'t,.9). ¢ >0
and all possible transforms Y = Y [{]. Here ¢ is the exactness parameter /1, 2, 7/. Suppose
the instant ¢, &€ [#,. 8) has occurred and the transform Y [7,] has been realized. The law
of control U on the remaining segment {f,. 9] is the set of three fixed components U = {u (-),
e A {4}, where A {t;} is the partitioning of segment [f,. 8] :ti =t t3 >t i=1....,k and
t,.y =% k is a positive integer, The law U and the transform Y [{,] generate the continu-
ation of the motion 7 [#, [-]9]. It is the solution of the stepwise equation

Fll=A@sltl - BWu, Yyl &) — C @)v el (1.6)
<t Tty i=1....%

which admits of measurable samples v {t] = Q. The process quality indicator is specified by
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W

v=1218)] = Si¢ @t ut)) = ¢ & vien)ar (1.7)
t,
where the functions ¢ and 1 are continuous and the symbol |z} denotes the Euclidean norm
of the vector 7.
We define the guaranteed result for the law U by the eguation

Pl Y U)y= sup sup 7 (1.8)
@ (e[ -10] i, Tt - 10T}
where the internal upper face is calculated, using all possible pairs {z,, v (f, [-}8]} that
satisfy conditions (1.4) and (1.5), when ¢ =19. The external upper face is calculated using
all possible continuations ¢* (t,[-]19] of the admissible component g¢* (f,[-]¢t,] from V¥ (1,1
The admissibility of the continuation ¢* (¢, [-/8] is determined recurrently by steps b <t-7

tiy paired with the continuation u (f,[-19] of the sample of the control ultl = u (¢t;. Y .0
€. 1, <<t Tty i=1.....k Here Y [t} is the transform composed of the component .,* speci-
fied at the beginning and of admissible compenents ¢* (¢, [-1¢,) and w {#;[-]1t;] referred to the
instant ;.

We define the guaranteed result for the strategy u (-) by the equation

M) Lo Y [t = Tim lim upp (tys Y [2,): Uy 1.9
£0 6=0 Ug

where U is the law whose step may; (1., — t;) does not exceed &> 0.
We have to determine the optimal strategy u° (-} that satisfies the condition

P e e Y e h=minpw () 4, Y[t =" (e Y [i,D (14
u(e)
whatever the instant {, =< [{,. 9] and the admissible transform VY [{,]. The optimal strategy

u () does exist. We call the quantity p° (f,.Y [£,]) the optimal guaranteed result. Below,
we describe the calculation of p°(f,. Y {t,]) and the derivation of ' (-) using the method
cf programmed stochastic synthesis /1, 2, 7/.

2, The programmed stochastic derivation. Let us construct the auxiliary model
Z whose kasis is a : object which operates in imaginary time 1. The current state of the :
cbject is defined by its phase vector z = {u. {}. where the dimensions of the vector wu is

the same as of the vector 7. and { 1is a scalar. The variation of w and [ are subject to
the eguatiocns

w'=A (tyu =B (1)u* — C (1) v* (2,1
SoE g moak) = oY) (2.2

where u* and t* are constrained by the restrictions w* & [ and * = Q.

Let the instant 71, = {f{,. 8] be specified. We set the partitioning A {1;} 11 = T4 T > T;
j=1.... g1, =% with g a natural nutkber, and introduce the probability space /&/ {Q. I. p}.
0= {i. ... &} generated by the random gquantities §; independent in the aggregate, each of
which §; = [1;] is realized at its own instant T, All §, are equally probable in the
segment /0, i/.

We will cail w* (-} the stochastic prograr for the control of the non-anticipatory
function /8/

EILE T

v AT, ey = 0* L HlE Tl o<t ITa

j=1,....8g~—1

and the stochastic program t* (-) for the dynamic disturbance the random function
(1. w) = * LG L EEQ

that is measurable over the set of variables 1, w.

Let some deterministic sample u* (t, [-]1,]l = {u* It1] = P, t, <1 1,} that is measurable be
indicated. The random vector uw (+) = {v (w), 0 = Q,), the number {,, the sample u* (¢ [-11,], angd
the pair of programs u* (-). v* (-) define the random motion 1z (., ') = {z(r. o) = {w(t, ).
o) it LY 0= Qe (l. w) = uw(w). L, w)=1{)of the z object. The functions w (T, o)
and (1, w) are here solutions of the stochastic differential equations (2.1) and (2.2), when
at =¥ (1], 1, < T T W =0 (1. 0), T, < TKH v =v* (1, 0), <t

As in (1.3), we assume the dimensions of the vector r to be the same as of the vector

¢* from (1.2). Let some set of admissible components z*, ¢* (f, []11,], u (& [-11,], that con-
stitute some transform Y [r,] (1.2), when ¢ = 1,) be indicated. Let r{t [-11,] be the
respective function (1.3). We call r* (-) the stochastic program admissible for the given

zo*, 7 (8, £-11,) and w (¢, |-} 1,) for the non-anticipatory function
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r‘(‘t, (1))=T"[T. §1...-,§j]a Tj<‘<7j4lv ]'=1‘-~-'g—1

whose samples are almost certainly piecewise continuous and satisfy (also almost continuously)
the following conditions:

(r* (1, 0) — K (1) [ X [T, o] w (@) + (2.3)

SX (6 A]C ) (v ) dv])ee S(1) T T E

1,

and the pair {w (w), t* (v. w)} consisting of the random vector (w) and the stochastic
program v* (v, ©) satisfy, in addition to (2.3), the conditions

(1* —w(w) =R (2.4)
r@—K[X {1 to]u () + (2.5)

T
SX[T, vICw)e* (v, @)@v) =S (1), <<t T,
t
To each admissible set =zo*. r(t,[-)t,l. w(t [-11,] there corresponds at least one admissible
program r* (-) = {r* (1, w), T, <1< % 0= Q).
We define the state of model Z at the instant 1, by its phase element

Z l1e] = {zo*. r (1o [} 1), 24} (2.6)

where r(t,[-]1,] is an admissible function, i.e. for which the pair {w (©). V* (v. w)} exists
that satisfies conditions (2.4) and (2.5), and the component :z, is some vector I, = {u,. {,}.

Let us estimate the element Z[r,] by a suitable indicator p (r,, ZIt,); A {1;}) as
follows. Let [ be a vector of the same dimensions as the vector u. We introduce a random
vector I (-} = {{(v), w=Q} with the norm

e = “Iai_n&a-\' [ (w) | @.7)

Let M {...}) denote the expectation and M {...l%,...,;} the conditional expectation, where
the prime denotes transposition. We introduce the quantity

2(Te Z[Ty)s AT L= (2.8
sup sup inf MDY (O e (o) — ] +
PECY {0 L)

L]
= L@ X 18, 1) Byt n o) — g (r u* (1, @) dT +

T

|1 (M X8 T]C T e*im, o — ¢ (T ¥ (1, 0))] dT)

Sty

Here the inner upper face is calculated using all pairs {w (w), r* (1. ©)} that satisfy conditions
(2.3)=1(2.5) for a fixed admissible program r* (-). The external upper face is then calculated
using all programs r* (-) that are admissible for component -~ * and r(f,1.11,] from ZIr,l

The lower face in (2,8) is calculated using all possible stochastic programs u* ().
Let us determine the programmed extremum p. which evaluates the element Z [t,] for the
specified partitioning A {r;} by the equation

CZI ) A = sup x (ter Z 11410 A {3}, 1 (2.9
If in (2.8) we set

s

= S X[ t]Bmyutidn, Le=2%
i,

-
.

vl *
-

¢t uit)d (2.10)

the quantity o (t,.Z,[7,], A {1;}) takes the fomm

P(Te Z[th A{T;H=

sup sup sup inf M (I (0)u (§ o) - (0, o)}
WKL) (), v (N u*()

where z (1, 0) = {w (v, ©), { (1, w)} is the corresponding rendom motion of the z-object generated
from the initial state z (4, @) = {w (w). §,} by the programs v* (-) = {1* (1, w), <t

- and
ll' (-)= {u‘h I(-<T<T’;H(T, ‘“)v Tt<7<0)'
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3. Stability of the program extremum. We put I, = M {I(-)}. and take some maxi-

mizing sequence for (2.9) of random vectors 9 (.), s= 1, 2,... for which the following limit
exists:
lim 1,® = lim M {I@ ()} = I° [1,] 3.1)
e Sweor

Let us compose the set L°l1,, Zix,], A {1;}] of all vectors [Ir,] that can be obtained
by passing to the limit (3.1). The set L°[r,.ZI[r,], A {r;}] proves to be closed and convex.
These sets are upper continuous and vary on the inclusion, when the component 3z, in Zlt,}
(2.6) is changed. We select the instant 1* = 1;, where i is some fixed subscript from the
numbers j=2,...,g for fixed 7,. A{r;} and Zlr,]. Let the vector h have the dimensions
of the vector z. We introduce the sets

H@)=colh:h={B*tu. g, 0)}), ucs Pl, , <1

where the symbol [...] denotes a convex envelope of the set [...]B¥r1)= X[0,71]B(1). Let us
take the element

Z [t*) = {uo*. r (8, [-Ir*], 2*} (3.2)
where the admissible function 7 (f,|-It*] is a continuation of the function r (4{-l,] £rom
Z (1, and vector z* is connected with the vector z, from Zlr,] by the equation
=
z*::,—S/z[r]dT (3.3)

Tx

and % l1] is some fixed measurable function that satisfies the condition

rtle H@., 1, <t 1* (3.4)
Let the partitioning A {1,*} for the segment [t*, 8] be linked with the original partition-
ing A {1;}) for the segment [1,,8] by the relation 1t* =1y, j=1,...,¢g—i+1=¢g"

following the reasoning in ,/Z/, we cobtairn the estimate
(T Z[t*] A(T*) o (e ZIn b A{T ) + (3.5)
o

S (s°[t*) 1 T] — fr:n}iir{lr S[t*¥1hydr, = {7, 1}

where °[t*] is any vector from the set LS[t*, Z [t*]. A {1,*}]. We introduce the functional sets
Hio=li ¢, [Fl*} sk il = B (x). sh 1] = min skl s={'. 1}
hzHm

where h(t,[-11*] will be treated as elerernts of the spece of the functions f{h ], T <1t 1%}
with the integrable square with the norm

.
1 5 WMy
P10 e = (Usia par)

1¥

The sets H, are convex, weakly closed, and weakly upper semicontinuous on the inclusion,
when the vector [ varies. Using the properties of the sets L°[1*, Z [t*], A {t,*}] and H, we
can, using the theorem abcut the fixed point in /9/, establish the existence of the pair
{IPl1*].k° (1, |-]1*]} from which the following conditions are satisfied:

Flt*l & L° (1%, Z° [1*]), A {7;*}] (3.6)
h* (T*[’]T*]EHz {1*] (3.7)
where the symbcl Z |1*] denotes the element £ [|t*] (3.2) whose third component is the vector
v
K=z, - \ Woyt)dT
T

The theorem on the fixed point mentioned above is applied here to the appropriate re-
presentation of pairs {l.k (1,1-11*]}. and is constructed in the manner used in similar cases
(see, e.g., /2, 10/). Selecting in (3.5) the vector [°[t*] and the functions Al = k[T,
we shall prove from (3.6) and (3.7) the validity of the statement given below.

Let the partitioning Af{r;) of the segment l[1,, 91 C [t 8] be specified and let the
admissible element Z[1,] be selected. We set any arbitrary instant ™ =1, E A {r;}. Then
for admissible continuation r (i, |-)1*] of the components r(f,-f-lt,] frem Zlr,] the func-
tion If(1,1-11*] can be found from (3.4) that satisfies the following condition. When it is
substituted intc (3.3), we obtain the vector 2*° which, together with the vector z* from
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Z |v,}, and the admissible continuation function 7 (f, [-}1*]) indicated above constitute the
element Z°[t*] which satisfies the inequality
p (%, Zt*] A {t;*)) < pty. Z 1) A {1 (3.8)

This statement is the expression of the property of the program extremum p (2.9), which
we shall call the stability of the quantity p.

4. The extremal displacement. Consider some transform Y [¢](1.2). Let ybe a vector
whose dimensions are one greater than the dimensions of the vector z. Hence the vectors y and
s are of the same dimensions. The vector function yli,[-]?] which we define by the equation

X8 VBl o
Slq«\ u [v]) Ldv, [P R (4.0

corresponds to the transform Y [f{j. We shall call the controllable component of the transform
Y (t], and the function (i [-lt! = {ritl.{;<<1 [t} defined in (1.3) the information component

of that transform. For the given transform 1} [i] we shall call the element Z |t (2.6) a
corresponding element (where 71, = t)) in which the vector ,* and the component r (t, [-]1t] are
the same as the component .,* and the information component r(f [-]¢] (1.3) of the transform
Y 1], We set the instant 1t* = (1, 8] that satisfies the inequality Tt —t :] 6, where § is
some positive number. The vector u,& P is selected on the basis of the condition

'43*() IB*()
l‘cr(t") lcr(f, l

where y[t] is the value of the controllable component (4.1) of the given image Y (1], and gz,
is the component of some element Z [t]. which corresponds to that image Y [t]. We shall call
(4.2) the condition of extremal shift on Z [t].

Let Y [t] and the element Z[t] corresponding to it, be fixed. We continue the third
component u (¢, [-]12] of the transform Y [t] (1.2) up to the function u (¢ [-]1*), setting ult] =
u,, t <1< 1. Let us continue somehow the information signal q* (t, [-]¢] from Y [¢] up to the
signal g¢* (¢[:)t*] which is admissible together with z,* from VY [t] and the new component
u(ty[-]1*]. In other words, we continue the signal g¢* (t,[-1t] so as to obtain the admissible
function

y it} —

T
rit]=g¢*I T]—A(TS\[T, Bwulvldy, to<lt {4.3)
i

The vector «t,* from Y [i] together with the indicated continuations wu (¢ [-]1*] and
* (t,[-]7*] constitute the new admissible transform Y {t*]. Its controllable component y ¢ [-]

T*] continues the component ylt,[-17,] from Y [t] in accordance with the equation
X [v]Bwiu(v]
j=ylt]— \: ) idy, t<T=_t*
dI=sld =1 gy <
Let us take some element Z {t*] = {x;*. r (¢, [-]1*], z*} which corresponds to the new trans-
form Y [t*] and such that the component z* = :z[t*] is defined by (3.3), (where 1, =1) and

h[1] is some function that satisfies condition (3.4).
The following statement holds. Let

=max 4 ()l - 1 =max max [4 () -1 (4.4)
<< LIS Ix=1

For any number o >0 it is possible to indicate a number & >0 such that whatever the
admissible function 7 (f{l-]T*] and the function & (¢1-]17*] in (4.3), the following inequality
is satisfied

jyl*l —z* Pyl — 2|2 exp2h (1 — 1) = a(t* — 1) 4.3)
provided 1t* — t < 6.

5. The limit program extremum. The validity of the following statement is established
on the basis of the assertions in Sects.3 and 4.
Whatever the elements Z [1,] and the sequence of divisions A" = A {t;9, s =2.3,... of
the segment |[t,, #] that satisfies the condition
lim max; (1'%y — 10) =0 (5.1)

s—x
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there exists the limit

linp(ry, Z{r ) 357D =p (e Z[1,]) (3.2)

The limit p (1,. Zlt,) in (5.2) is one and the same for any sequence A {1} that
satisfies condition (5.1). The quantity p (1, Zlt,]) has the same stability property as the
quantity p (1. Z[1,], A {1;}). We can select any instant 1* & (1,, ®] for the instant t*
appearing in the stability condition. We call p (7,, Zir,]) the limit program extremum.

From the stability property ¢ (1,, Z [1,]) and from the property (4.5) of extremal dis-
placement (4.2) given in Sect.4 there follows the proof of the construction of the optimal
strategy u°({,Y,e). Let us take some information transform Y lt] to which there corresponds
the set of respective elements Z [t] which differ between themselves only by the component

2. Among the respective elements Z[t] we select the element Z'9{t] which accompanies the
transform VY {t] and satisfies the condition
p (. Z© [1]) = min p {t. Z 1D
Z11]

with the constraint
|y [t) — 2, 1T e exp 2k (1 — 1,)

where J is a number from (4.4). Let =z {f] be a component of the accompanying element
Z9 [t].  We specify the vector u,(t.Y [t],e) that determines the extremal strategy u,(t,Y,e),
on the basis of the condition of extremal displacement (4.2), where 2z, = z(9[t].

We conclude from the estimate (4.5) and the stability of the extremum p (¢, Z [f]) that
for any initial transform VY [f,] the control law U, based on the strategy u, (-) and working
with a partitioning A {t;} with a fairly small step max; (ti, — £) << 8, guarantees for the
transform oktained the inegualities

ful8) —zo (8] < u (e, 8),limlimp (e, 8§) =0 (5.3)
e—0 §=0
p (8. Z< [8]) < p (1, 209 [t,)) (5.4)
By definition of the quantity p (8. Z9[8]) we have the equaticn

p(. 209 = max  max M {l’((«))(.\' [§, to] w(w) + (3.9
WKLY gy v}

® N
we (¢ — 9] = ( Ty X [8, 1) Cirir it o) =¥ (1. v (T, um]dr:‘

1

where @ [§) and @8] are components of vector =z {#] of the accompanying element
Z<[8l. From (5.3) and (5.5) we have the estimate

N

08, ZO[8) > max (|2 [9] — (g (r, [t = ¢ (1, p[Th)dT) = ot &) (5.6
S ;|

ix,
where

L
2[8)= X [8, t]ao — VX [0, 1](Bnyu[r] = C(r)v[t)) de

and ult] are values of component u (t,[-]%] from Y [8]. The maximum in (5.6) is taken over
all pairs {r, v{-]} that satisfy conditions (1.4) and (1.5) when t =19  The quantity o (e. 8)
satisfies the condition
lim limo (g, ) =0
e=g 8-
From (5.4) and (5.6) by the definition of the factor ¥ (1.7}, and the guaranteed results
[ (1.8), (1.9) we conclude that for the extremal strategy u,(f, Y, e) the following inequality
holds: -
P (e ()5 2y YU < op (4. Z[1,)) 6.1
where Z[t,] is the element that corresponds to the original transform Y [t,], and the vector

2, = {w,. L} from ZI[t,] is defined by (2.10), when 1T, =12,, L =0
A further check shows that for any admissible strategy u (-} the inequality

p (u ()v t*» Y “*h >’ p (t*, Z rtg])

wr

.8)
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where Z[t,] is the same corresponding element, must be satisfied.
It follows from (5.7) and (5.8) that u,{{, Y, &) is the optimal strategy u°(f, Y, e), and
the following equation holds:

P° Uy Y Ht,)) = 0 (b, 2 12,)) (5.9)

where Z[t,] is the element that corresponds to the transform Y [{,] and satisfies the con~
dition that its component z, is equal to the control component y lt,] from Y [¢,]

6. The optimal control algorithm. Let the initial information transform VY |t] =
Zo be specified, and an arbitrarily small number a >0 be selected beforehand. It follows
from Sects.3—5 that to realize the law of control U which would guarantee the inequality

PPty Yt + @ (6.1)

one has to proceed as follows. First, a reasonably small number £>>0 is to be selected and
the partitioning A {t;},i =1,.. .,k of the segment |[f,,®] with a fairly small step § is to
be chosen. Next, for the recurrent instant !; at which the transform Y [{;] is realized, it
is necessary to specify the partitioning A {t;},j=1,..., % —i 4+ 1 of the next segment [¢;, 8]
which satisfies the condition ;= t.;, j=1,..., g Finally, the function p (1, Z ], A {t;})
is to be calculated for elements Z [t;] that correspond to the image VY [#;] and satisfy the
condition

*

24 [t] — y [t;] | < eexp 2h (¢ — tg) (6.2)

From (2.8) and (2.9) we have

pltn Z[t:) A= (6.3)
sup sup sup inf M {1’ (@) X [®, to]u (@) +
MK e (), TR ur()

[ (@) X [8, 1) C (1) v* (1, ©) + $ {1, V* (1, 0))]dT +

[ - Wl P Y- 3

[ (@) X [0, 1] B(r)u* (1, 0) + ¢ (T, u* (T, 0))}dt +

@)y [t] = L t])

We represent the random vector [!(-) in the form I(w)= M {{(w})} + a(0) =1, + a(a),
which enables us to determine the upper face p (6.3) in the following manner. We fix some
vector !, with the Euclidean norm |, } < I,and calculate the upper face on the right side of
(6.3) with the supplementary coendition M {/(w)} = I,. We denote it by p (¢, Z [4], A {z;}, I,).
We now have

P (lh z [tiL A {Ti}) = ,Ilnla"\-l Y (zn Z “ilv A {TJ')V l#)

Then, it is necessary to determine the accompanying element Z© (t;) with component z'© [¢;],
starting from the condition

p(ti. 291, Adfyy)) = Izﬂ[:r; ol ZIt], A{y)) = (6.4)

min max p (¢, Z [t;], A {1;}, 1,)

2,01;] Ha'<1

The important fact is that the function p on the right side of (6.4) is linear in 2, [t;]
and concave in [,. Hence the operations min and max in (6.4) can be transposed. We thus
obtain the equation

p 29Il A = max minp (1,. Z (1)), A {1}, 1,) (6.3)
MHal€1 2401,]
Calculation shows that the component : [t;] = {uw® [1,], {© [#;]}) of the accompanying element
Z© [t;], defined by the condition for a minimum in (6.5) with constraint (6.2) has the form
wo ) = ol + LA ) =nit) + A (6.6)
A— eexp 2k (¢, —t;)

TENTHORE

where zlt;] and (1) are components of the control component ylt;] of the transform VY [t,].
Moreover it appears that the function of !, under the maximum sign in (6.5) is strictly con-
cave in [,. This means that the problem of the maximum in (6.5) has a unique solution [I°[t].

The accompanying element Z¢'[t;] for the selected ¢ and for the transform Y [t;] is uniquely
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defined. The required vector u,(/;. Y [t;]. e, A) & I’ that determines the control action
u [” = Uy (liv Y [t,‘], E. A), ’i < 1 < tiq (6.7)

is obtained from the condition of extremal displacement

| B* (1) ue tn Y [tilie, 8) )
@t ue (e Y[t & A F T

y ] — =08y

] — oy 2 e
min J— e, i
vip Y ) gty |
In accordance with (6.6) this means that vector wu, (/;. Y [t;]. &, A) is the solution of the
problem for a minimum
FUIY BYt) ve (1. Y {t], €, A) — @ (i v, (2. Y {15, &, A)) = (6.8)

min [ [t;} B (¢;) u + ¢ (t,, u))
where I°[t] = I" (¢;, Y {t;], e, A) is the solution for a maximum of (6.5). This completely defines
the step-by-step algorithm.

Hence, when it is necessary to organize a step-by-step control which is guaranteed by
the inequality (6.1), one has to select a reasonably small parameter >0 and a partition-
ing A {} with a fairly small step 6>>0. Let the partitioning A {{,} contain k steps
(t;. tin), i =1,.. .,k To calculate the control action ul(t] (6.7) it is necessary in the
course of it to turn kX times to the solution of the ancilliary problems (6.5) and (6.8) . Each
of these is a problem of convex programming.

A similar control procedure can be justified also in the case when the ancilliary problem
of the form (6.5) is solved not for the function p (f;, Z 1], A {r;}) but already for the limit
function o (t;, Z [t;]). In that case the control action ultl = v (t;. Y], &) = u, (t;, Y 1) ). 1, < ¢
li.,. determinedby the condition of extremal displacement, does not depend on partitioning A {t,}. and
is determined only by the instant {; of realization of the transform Y [¢;], and by the parameter e.
Then the vector «° (1;,Y [t;]. e) will be the value of the universal optimal strategy u°(t, Y, &).

Note that in certain cases it is convenient when determining p (v, Z (1], A {t;}) in (2.8)
and (2.9) to select not the norm |[I(-)}j of the form (2.7), but some other norm. The
following norm often proves convenient:

)+ = QF (11 (@) Py

For instance, such a norm may be selected in the case, when the indicator y (1.7) has
the form v=1r 19 | (5.9)

In that case we have in (1.7) ¢=0U and { =0, and the previous construction can be
simplified without introducing supplementary coordinates 1 and {. However there may appear
in the reascning details related to the fact that the solutions cf the ancilliary problems of
the form (6.5) may be non-unigue. Hence it may be advisable alsc in the case of indicator v
(6.9) for determining the vector [° [t;] to retain the complete scheme of calculations described
apove. In part of that scheme where the functions ¢ and { appear, the respective terms will,
of course automatically disappear.

Instead of sequencies of random quantities §; it is possible to select some probability
process ¢lt, ©] continuous in time 1 with idependent increments. For instance, it is possible
to select a standard Brownian process. It is then possible to avoid the partitioning A {t;},
and the theoretical reasoning takes a more concise form. However in the case of a continuous
process tit. w] the problem of the existence of the random maximizing element I(w} proves
to be more complicated, since the respective required martingale Lltl=M{{(u)|{ilv, 0], ,<v <
1) appears to be less adapted to this ancilliary problem. We stress that the difficulty
arises in connection with the existence of a completely random vector. The maximizing value

Flt)= I, Ytl.e)y for the vector i, that plays the part of the expectation ¥ {I(w)} is also
present in the selection of the continuocus process §l1, ol

The signal ¢*{t] can be replaced by some other information carrier. It is, thus, possible
to use the information sets G [1] obtained in some way; they are composed of phase states

compatible with the current information.

For instance, in the case of the indicator ¥y (6.9) the theory set forth above can be
reformulated without altering its essence in a clear manner in terms of the sets G {t] com~
posed of possible states z tl. The part of the program-vectors r (i, ) is transfered to the
program-sets

T
Nt w= {ur W= ug— S X[uv]Bu v o)dv, us =G (T, 0), 0 & Q 1, LT% ﬁ}
lo
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The respective formulae are automatically rewritten by introducing in appropriate places

support functions n(/, 1, @) which are non-anticipatory on §; = §[r;] and of sets N (1, o) (or
sets with N (1. w)). In that form the respective formulae are sometimes simplified even further.

8.
9.
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