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DETERMINISTIC STRATEGY AND STOCHASTIC PROGRAMS* 

N.N. KRASOVSKII 

The problem of the control which minimizes the guaranteed result /2/ is 
solved by the method of stochastic synthesis /l/. The object is described 
by a linear differential equation. The quality indicator is composed of 
the phase vector at the end of the process and of integrals of samples 
of the control and dynamic interference. The information element at the 
current instant of time t is composed of the signal representing the actual 
motion with the error and of the control history up to the instant t. 
The information error, the dynamic interference, and the control are 
constrained by geometric limitations. Thispaper is related to papers 
/3--7/. 

Statement of the problem. Consider the x-object defined by the differential 

+' = A (t) x + B (t)u i C (t)u, t, < t < 6 (1.1) 

where Z? U, v are column vectors of the matrix function A (t), B (t),C(t) which are continuous. 
The control u and the disturbances L! are constrained by limitations u E P,VE Q, where P 
and Q are compacta. Information about the initial and current states x l&l = J,, and ;r III. t > 
t,of the phase vector t are defined by the vectors zO* =x0 f .&* and q* 111 = K (t) i It] - 

Aq* 111, t, < 1 < 6, where h'(1) is the continuous metric function, and the distortions Aro* 
and Aq* [t] are constrained by the limitations AZ,* f R and Aq* ItI G .S (t), where R and s (t) 
are compacta. The sets S(t) are continuous in t in the Hausdorff metric. We denote func- 
tions of time as follows 2 [t, [.]t*! = {x Irl, 1, (7 .*< f*), z (f* [*It*1 = {J ITI, i, CT < PI , etc. 
The set 

Y It1 = {z,*, q* (1, I.1 il, rI (to I.1 11) (1.2) 

will be used as the information transform of I' It1 . 
Piecewise-continuous samples q* l~l and measurable samples u [T] in (1.2) are admissible 

Moreover the admissible functions q* ITI and u IT] are connected by the following condition. 
Let X [T, v] be the fundamental matrix of solutions of the equation dx'h = A (7)~. We put 

r 171 =Q* IT] - /i (~1 \ .y IT, v] B (v) u [v] do 
i 

(1.3) 

The vector z0 and the measurable function c (lo [.I !I = {L. ITI G Q. t, < T :< t) that satisfy 
the imbedding 

(To* - ZO) E R (1.4) 

must exist. 
We shall call the strategy I,(.) the function II (1, I-, E) defined for f E [to. I?). F > 0 

and all possible transforms Y= Y 111. Here t is the exactness parameter /l, 2, :/. suppose 
the instant 1, E /1,.6) has occurred and the transform 1'It,l has been realized. The law 
of control U on the remaining segment Ir,.Ctl is the set of three fixed components 

E. A (G,. 
c = {/i (.), 

where A {ti) is the partitioning of segment it,. 61 : 11 = t,: ti_, > Ii. i == 1. . . ., k and 
L,,_, = 6, k is a positive integer, The law U and the transform Yl1,1 generate the continu- 
ationof the motion XIt, 1.181. It is the solution of the stepwise equation 

J' III =: A (t) .T If] - B (2) II (f:, ‘I’ It,!, e) - C (t) v It]. (1.6) 
ti < t - f{L,. i = 1. . ., ?i 

which admits of measurable samples v[ii~ Q. The process quality indicator is specified by 
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Y = 13 is1 I - j I’c UT u IfI) + q- (1, L’Pl)]df (1.7) 

where the functions r$ and 11: are continuous and the symbol ]I 1 denotes the Euclidean norm 
of the vector .r. 

We define the guaranteed result forthe law V by the equation 

where the internal upper face is calculated, using all possible pairs {z,, L'& 1~161) that 
satisfy conditions (1.4) and (1.5), when t = 6. 
all possible continuations 

The external upper face is calculated using 
q* (fL I.161 of the admissible component q* (to [.I i,l from Y ll*l. 

The admissibility of the continuation (I* (t,[.J61 is determined recurrently by steps t,<t ' 
1,+1 paired with the continuation u (1,[.11?1 of the sample of the control u I71 = u (I,. Y 11.1. 
E). li < T ' fi-1. i = 1. . . . 1;. Here Y [tt] is the transform composed of the component .I,,* speci- 
fied at the beginning and of admissible components rr* (t,, 1.1 t,] and II (to I.1 til referred to the 
instant li. 

We define the guaranteed result for the strategy u (.) by the equation 

o(u(.); t,,~~lt,])=linllimiupp(t,,l'[t,]: I*$) 
c-0 E-0 1.6 

(1.9’1 

where L.6 is the law whose step mal, (i,.r - 1,) does not exceed b > 0. 
We have to determine the optimal strategy u0 (.) that satisfies the condition 

p(li'i.!. 1,. 1- ]l*]i= minyl(u(.); t,. Y[f*])= ~'(1,,1'[1,]1 
lJt.1 

ll.l~l) 

whatever the instant 2, E Ii,,. fil and the admissible transform 'J' If,]. The optimal strategy 
UC (.) does exist. We call the quantity 0' (f,. Y7 ]I.+]) the optimal guaranteed result. Below, 

we describe the calculation of P‘((*. Y it,]) and the derivation of ui (.) using the method 
cf programmed stochastic synthesis /l, 2, I/. 

2, The programmed stochastic derivation. Let us construct the auxiliary model 
2 whose basis is a ; object which operates in imaginary time r. The current state of the z 
object is defined by its phase vector z = {u.. c). where the dimensions of the vector U' is 
the same as of the vector 2. and ; is a scalar. The variation of IL‘ and 5 are subject to 
the equations 

u.' = A (TJ 11. - I! (T) /i* - C (T) L.* (2.1 
. . 
* : q IT. ii*) - J’ fT. L.*) ‘2 2) . 

where II* and I.* are constrained by the restrictions u* E 1' and L'* E Q. 
Let the instant T*E I:,.81 be specified. We set the partitioning A {T>) : 11 = 7,. 'I,_, > rj 

j = 1. . . ..F. ry = ti with 8 a nat-ral nurker, and introduce the probability space /6/ {O. 11. pj. 
0 = {&. . .,f;) generated by the randon qcantities $, independent in the aggregate, each of 
which i, = Z[T,] is realized at its own instant T,. All z, are equally probable in the 
segment 10, 1:'. 

We will call u* (.) the stochastic prqraT for the control of the non-anticipator> 
function /8/ 

Ii* (T, (,I! = I,* IT, i,. f,l .z I‘. T, < T I T/I. 
j = 1.. g - 1 

and the stochastic FrogreX L.* [.) for the dynamic disturbance the random function 

I.' (T. w) = I.* [r. &. . . Es1 E Q 

that is measurable over the set of variables T, 0. 
Let some deterministic sample u* (to I.1 T+I = { U* [TIE P. i, <T <T*) that is measurable be 

indicated. The random vector IC(.) = {U(O). oE R,),the number &,, the sample U* (to [.]?*I, and 
the pair of programs u* (.). L'* (.) define the random motion 2 (., .) = {: (T, o) = {ti (T, 0). 5 (T. 
0)). i, -,; T .< 8. o E 0: 1,' (:,,. w) = U' (w). c (tu, w) = 5,) of the z object. The functions UJ (1, 0) 

and C (1, 0) are here solutrons of the stochastic differential equations (2.1) and (2.2), when 

u* = u* [rl, 1, < T < T*. u* = u* (7. w), T* < ,r <6; L’* = u* (7, o), t, < 1 < 0. 

As in (1.3), we assl.lme the dimensions of the vector r to be the same as of the vector 
* from (1.2). Let some set of admissible components zO*,g* (to [.1-r,], u(fO ].]r*], that con- 

gtitute some transforr. Y Ir,l (1.2), when t = T*). be indicated. Let r (to I.1 ?*I be the 

respective function (1.3). We call r* (.) the stochastic program admissible for the given 

10*. ~(1, [.]T*] and ii (tu 1.1 T*! for the non-anticipatory function 
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r+ (7, 0) = r* IT, t. . . ., Ejl9 ‘j < 7 < Tj+l* i = I, . f . , g - 1 

whose samples are almost certainly piecewise continuous and satisfy (also almost continuouslY) 
the following conditions: 

(2.3) 

and the pair {u:(o), V* (v. 0)) consisting of the random vector w(w) and the stochastic 

program v* (v. CO) satisfy, in addition to (2.31, the conditions 

(x0* - w Co)) E R (2.4) 

(r(l)-li(T)[S[T, to]U’(O)+ (2.5) 

~x[7,V]Cw)v*(%W)dv])ES(7), to<r\<r, 

1. 

To each admissible set I~*. r(i, /.)?*I. u (to [.)7*) there corresponds at least one admissible 
program r* (.) = (9 (7, (r)), 7* < 7 .< 8. w C Q). 

We define the state of model Z at the instant 7+ by its phase element 

2 IT,) = {X0*. r (to l.lT*l. 2*} (2.6) 

where r(t, [.)7,1 is an admissible function, i.e. for which the pair {ID(O). v* (v. w)) exists 
that satisfies conditions (2.4) and (2.5), and the component zs is some vector z,, = {u.*. 5,). 

Let us estimate the element Z IT,] by a suitable indicator p (T*, Z IT*]; A {TV}) as 
follows. Let 1 be a vector of the same dimensions as the vector u'. We introduce a random 
vector l(.) = {1(o), oG9) with the norm 

!I I (.)I[ : vIai mar / l(o) ) 
oan 

(2.7) 

Let .!I {...) denote the expectation and .flI(...!Et,..., El} the conditional expectation, where 
the prime denotes transposition. We introduce the quantity 

Here the inner upper face is calculated using all pairs (~1 (CO), I‘* (T. CO)) that satisfy conditions 
(2.3)-(2.5) for a fixed admissible program r* C,). The external upper face is then calculated 
using all programs r* (.) that are admissible for component I.,,* and )' (1, I .I T*] from z IT*]. 

The lower face in (2.8) is calculated using all possible stochastic programs II* (.). 
Let Us determine the programmed extremunl p. whichevaluates the element 2 IT,;\ for the 

specified partitioning 1 {T]} by the equation 

P CT*. Z IT*I. A (T,)]) = SUP x (T*, Z [T*I* A {Tj}, I (‘)) (2.11) 

ill<. 1 ICI 

If in (2.8) we set 

1. 

U'* = i x 16, T]B cT)U [T] dT, (2.10) 

the quantity p (7*. Z,17.+1, A {Tj}) takes the form 

where ~(7, o)= {W (7, o), 6 (T,o)) is the corresponding random motion of the z-objectgenerated 
fromthe initialstate s(t,, 0) = {w(o), CO: by the Programs fl (G) = {v* (7, CO), to C 7 -<6) and 
U+ (a) = {U.!T’ 1,. < 7 <TT*; U (T, tu), 7, (7 ,<t+). 
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3. Stability of the program extremum. We put 1, = M {Z(e)}. and take some maxi- 
mizing sequence for (2.9) ofrandomvectors Z'S) (.), s = 1, 2, . . . for which the following limit 
exists: 

lim I,(") = lim M {P' (. )} = I" [r+l (3.1) 
*-cc c i-0; 

Let us compose the set L’ h+.Z Ir,l, A {7j)l of all vectors P[T*~ that can be obtained 
by passing to the limit (3.1). The set L"IT,.Z [?,I, A {zj)] proves to be closed and convex. 
These sets are upper continuous and vary on the inclusion, when the component 2, in 2 17,) 
(2.6) is changed. We select the instant 7* = Ti, where i is some fixed subscript from the 
numbers j= (..., 2 g for fixed T,. A {pi} and z Ir*l . Let the vector h have the dimensions 
of the vector z. We introduce the sets 

where the symbol 
take the element 

H (7) = CO (II : h = {B*(T) u. q (7, II)), L E Pl, 7* < 7 <7* 

I...] denotes a convex envelope of the set [...lB*(r) = X[19,1]R(7). Let us 

2 17*1 = {LO*. r (f” 1.1r*1, z*) (3.3) 

where the admissible function r (I, 1. IT*] is a continuation of the function r (to[.17,1 from 
Z Ir*l, and vector z * is connected with the vector z* from Z [7,1 by the equation 

z*=- _* - $ h[T]dT i3.3) 

and Ir 171 is some fixed meas.urable function that satisfies the condition 

h I71 E H (7). 7+ < 7 < 7* (3.4) 

Let the partitioning A {7,*) for the segment [7*,61 be linked with the original partition- 
ing A {7j) for the segment I~*,81 by the relation Tj* = T1_i_lr j = 1,. . . , g - i +- 1 = g*. 
following the reasoning in ;i./, we obtain the estimate 

Q (T*, Z [T*], A {T,*)) -C p (7*' Z [7+], A IT,)) -f- (3.5) 
7* 
S (s’[7*] /L[T] - min s'[i*]iz) do, sc= {I", 1) 
7. h%Hlr: 

where 2' Is*1 is any vector from the set L'l7*, Z [7*]. A {z,*)l. We introduce the functional sets 

Hi = [Ii (7* [.]T*] : ii IT] _ H (T). sh 171 == mirl s/21, s = {[‘, 1) 
htH,r) 

where h (7*[.1 T*! will be treated as eler.;_r.ts of the space of 
with the integrable square with the ncr~ 

/III (T*[.]T*],,: =fy (/r[7]l'd7jV1 
1. 

the functicns (hl71, 7*<7 ‘7*) 

The sets Hi are convex, weakly closed, and weakly upper semicontinuous on the inclusion, 

when the vector 1 varies. using the properties of the sets Lo [T*, 2 IT*], A {rj*}l and H, we 
can, using the theorer. abc.;t the fixed point in :9/', establish the existence of the pair 

(1" [7*1.1Zi(7, [.lT*]) fror. which -be followin conditions are satisfied: 

1’ [7*1 E L’ [T*. 2’ [7*1, 3 {TI*)l (3.6) 

h" (7* I. 1 7* 1 E H, IT* l (3.7) 

where the synbcl z [r*] denotes the element 2 IT*) (3.2) whose third component is the vector 

_ __&‘ jT]dT -* _- 
1. 

The theorem on the flxed point mentioned above is applied here to the appropriate re- 
presentation of pairs {/.I( (T* I.1 7*1). and is constructed in the manner used in similar cases 

(see, e.g., /2, lo/). Selecting in (3.5) the vector 1" IT*] and the functions h[T1=~~[71. 
we shall prove from (3.6) and (3.7) the validity of the Statement given below. 

Let the partitioning 1 {TV) of the segment I7,,61 C[i,,61 be specified and let the 
admissible element 2 [7,1 be selected. We set any arbitray(lin;t,y; T* 'Ti Fi7A/Tjkhe zt;E_ 
for admissible continuation r (to 1.1 7’1 of the components 0' . * from 

tion 11C(7.+[.]7*] can be found from (3. 4) that satisfies the following condition.* When it is 

substituted into (3.3), we obtain the vector z*o which, together with the vector XC, * fror;. 
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z IT*1 , and the admissible continuation function ~(1~ I*lr*l indicated above constitute the 
element Z' IT*] which satisfies the inequality 

P (T'* 2' Ir*l, A {Tj*}) 5 p (T*, Z IT*I. A {T;)) (3.8) 

This statement is the expression of the property of the program extremum p (2.9), which 
we shall call the stability of the quantity p. 

4. The extremal displacement. Consider some transform Y111(1.2). Let ybeavector 
whosedimensions areone greater than the dimensions of the vector r. Hence the vectors y and 
z are of the same dimensions. The vector function ylt, I.1 il which we define by the equation 

(4.1) 

corresponds to the transform l']ii. We shall call the controllable component of the transform 
Y[l], and the function r(i,,i.!f! -- {r[r).1,<r : 1) defined in (1.3) the information component 
of that transform. For the given transform 1-lil we shall call the element Z/f1 (2.6) a 
corresponding element (where T* = t)) in which the vector I,,* and the component r(t, 1.1 t] are 
the same as the component .tU* and the information component r(t, I.1 11 (1.3) of the transform 
Y lil. We set the instant T* -_ (t. a] that satisfies the inequality T* - t :I 6, where 6 is 
some positive number. The vector uIE P is selected on the basis of the condition 

, /i B*(t) 11, 

(YVI--*) 1 /I ,i: B*(t) u I 

'c (1, 4) 
P~Dlpn(y[i]-:*) 1 

_ )/ CF (t* U) j/ 
(4 ?) ._ 

where ?~]t] is the value of the controllable component (4.1) of the given image Y (21, and z. 
is the component of some element Z Itl. which corresponds to that image Y [tl. We shali call 
(4.2) the condition of extremal shift on ZIt]. 

Let Y/t] and the element Z[t) corresponding to it, be fixed. We continue the third 
component ~(t, I*111 of the transform Y[t] (1.2) up to the function u (to [.I 7.1, setting 1) IT] = 
U,,t<T<r*. Let us continue somehow the information signal n* (t, ].I t! from Y [11 up to the 
signal q* (toI*] T*] which is admissible together with zU* from Y[tl and the new component 
u (1, I-1 ?*I. In other words, we continue the signal q* (t, I.111 so as to obtain the admissible 
function 

1 

r[T]=q*[T]--(Tj\:S[T,~]B(r)U[v]dv, i,<7<7* 
L 

(4.3) 

The vector .rV* from l'if] together with the indicated continuations II (tu 1.1 T*] and 
9* (iO[.]T*l constitute the new admissible transfol-rr, l'IT*l. Its controllable component 9 11, I.1 
r*1 continues the component y ffoI.i~+! from Y It1 in accordance with the equation 

r~‘x[6,r]B(v,u[v]” 

Y ITI= Y it] - ; ; (i (,., u ,vlj 
1: dv, 
/i 

t<T -;T* 

Let us take some element Z~T*) = {~,*.r(t, I.l~*l,z*) which corresponds to the new trans- 
form Y IT*] and such that the component t* = z ]?*I is defined by (3.3), (where T* = t) and 

'1 ITI is some function that satisfies condition (3.4). 
The following statement holds. Let 

i. =,,m;nOlid (I) 11 -- 1 = ma\ nlas 1 .4 (1) .I 1 - 1 (4.4) 
2,61%0 ill=1 

For any number a >0 it is possible to indicate a number 6 > 0 such that whatever the 
admissible function r(~,l~l7*1 and the function h(~ I.1 7*1 in (4.3), the following inequality 
is satisfied 

/y IT*] - 2* I* .< (9 [II - Z+ I* esp 21, (T* - i) '; Q. (T* - t) (4.5) 

provided T* - t -< 6. 

5. The limit program extremum. The validity of the following statement is established 
on the basis of the assertions in Sects.3 and 4. 

Whatever the elements 
the segment IT*, 

Z Ir,l and the sequence of divisions A'i) = A (TV}, s = 2. 3, . . . of 
+I that satisfies the condition 

lim mar, (TI; - T,(.)) = 0 
s-1 

(5.1) 
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there exists the limit 

The limit I_'(T*. Z IT*]) in (5.2) is one and the same for any sequence s (TI(‘)) that 
satisfies condition (5.1). The quantity P(T*, Z IT,]) has the same stability property as the 
quantity p (T+. Z IT*], A {TV)). We can select any instant T* E (rc, @I for the instant T* 
appearing in the stability condition. We call p (T*.Z lr,l) the limit program extremum. 

From the stability property p(r,, Z IT,)) and from the property (4.5) of extremal dis- 
placement (4.2) given in Sect.4 there follows the proof of the construction of the optimal 
strategy ~"(1, Y,F). Let us take some information transform YItl to which there corresponds 
the set of respective elements z Iii which differ between themselves only by the component 

2*. Among the respective elements Zlil we select the element Z") [tl which accompanies the 
transform YI/l and satisfies the condition 

with the constraint 

where ?, is a number from (4.4). Let ~'~)lil be a component of the accompanying element 
Z':) Itl. We specify the vector u,(1. Y [tl,E) that determines the extremal strategy u*(t, Y,E). 
on the basis of the condition of extremal displacement (4.2), where z* = z(C) [il. 

We conclude from the estimate (4.5) and the stability of the extremum p (t, Z ItI) that 
for any initial transform Y If,1 the control law U, based on the strategy U, (.) and working 
with a partitioning A {C,} with a fairly small step masi(Ll - t,)< 6, guarantees for the 
transform obtained the inequalities 

By definition of the quantity p (8. Zic)!el) we have the equation 

where W ltil and t(“lfi3 are components of vector 2'" ISI _ . of the accompanying element 
Z"' 1141. From (5.3) and (5.5: we have the estimate 

(5.6) 

and u Irl are values of component u (to I.1 61 frorrl Y is]. The maximum in (5.61 is taken over 
all pairs {x0, VI.]} that satrsfy conditions (1.4) and (1.5) when t = 6. The quantity 0 (E. 6) 

satisfies the condition 

;In;rJa(&; 6)=0 

From (5.4) and (5.6) by the definition of the factor p (1.71, and the guaranteed results 

P (1.81, (1.9; we conclude that for the extremal strategy U, (t, Y, e) the following inequality 

holds: 
p (u, (.); t,. Y [Ll) < p (f*. Z It*! (5.;) 

where Z[t,l is the element that corresponds to the original transform Yl1,1, and the vector 

Z *= (w*. 5,) from Z It,] is defined by (2.101, when T* = t,, &, = 0. 
A further check shows that for any admissible strategy u(e) the inequality 

p (u (.); t,, Y lf*l) > p (t*, z [Z*l) (5.8) 
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where 2 It,1 is the same corresponding element, must be satisfied. 
It follows from (5.7) and (5.8) that u,(t, Y, e) is the optimal strategy a'(& Y, s), and 

the following equation holds: 

p" (t*? Y l&l) = P (f,, Z It,], (5.9) 

where Z[t,] is the element that corresponds to the transform YIt,l and satisfies the con- 
dition that its ccunponent I* is equal to the control component ~Jf,l from YIt*J. 

6. The optimal control algorithm. Let the initial information transform Y Ii”1 = 

=0 
* be specified, and an arbitrarily small number a>0 be selected beforehand. It follows 

from Fects.3-5 that to realize the law of control V which would guarantee the inequality 

0 d p" (to, Y IhI) + a (6.1) 

one has to proceed as follows. First, a reasonably small number e>O is to be selected and 
the partitioning A {ti}, i = 1, . . ..k of the segment Jr,, 61 with a fairly small step 6 is to 
be chosen. Next, for the recurrent instant fi at which the transform YItiI is realized, it 
is necessary to specify the partitioning A {Tj), j= 1, . . ..k -i + i of the next segment It,, *I 
which satisfies the condition T_+ = ti,j-l, j = i,...,f. Finally, the function P (jil Z ItlJ, A {r,)) 
is to be calculated for elements Z [til that correspond to the image YLtil and satisfy the 
condition 

I Z* Ifi1 - !/ Itil I < E exp 21 (ii - to) (6.2) 

From (2.8) and (2.9) we have 

P(ti* Z[lill A (72))~ (6.3) 

sup sup SUP inf hf {I’(o)X[(t, iO]~(o) + 
IV(.)1141 r*c.) iu.(.). t'(.)l U'(.) 

5 [I' (0) X [6, T] C (T) v* (T. o) + 9 (1, v* (T, o))] dr +- 

i [I’(O).Y[ct, T]B (T) U* (TV 0) j q (T, U* (T, 0))] dr $ 

1’ (0) U‘* [(,I T E Pi]! 

We represent the random vector I(.) in the form l(o)=- fij {1(o)) -L n (w) = 1, + D (o), 
which enables us to determine the upper face p !6.3) in the following manner. We fix some 
vector 1, with the Euclidean norm 11, ! <l-and calculate the upper face on the right side of 
(6.3) with the supplementary condition M {I(w)} = I,. We denote it by P (tiv Z It,], A (Tj}, I,). 

We now have 

p (ti, Z Iti], 3 {TV)) = mas 
Il.l<l 

P (la, Z ItiIv A {Tj)y 1,) 

Then, it is necessary to determine the accompanying element ZcC)(ti) with component z't) [tiJ, 
starting from the condition 

P (tz* Z"' JliJ, A {Tj)) = giy P (ti, Z JliJ, A {Tj)) = 

I 
(6.4) 

The important fact is that the function p on the right side of (6.4) is linear in z* Itil 
and concave in I,. Hence the operations min and maz in (6.4) can be transposed. We thus 
obtain the equation 

Calculation shows that the component z(" ItiI =; (u’(@ ItiJ, 5”) Iti]) of the accompanying element 
Zcc) Il,J, defined by the condition for a minimum in (6.5) with constraint (6.2) has the form 

where r JtiI and n[fiJ are components of the control component 9 ItrJ of the transform Y ItiJ. 
Moreover it appears that the function of I, 
cave in I,. 

under the maximum sign in (6.5) is strictly con- 
This means that the problem of the maximum in (6.5) has a unique solution I" JtiJ. 

The accompanying element %(c'J~iJ for the selected E and for the transform Y Jt,J is uniquely 



142 

defined. The required vector u, (ti. Y[tJ, e, A)E I’ that determines the control action 

II [t] = 11, (ti, Y Iti], e. A), ti < t < t,.l (6.7) 

is obtained from the condition of extremal displacement 

(y [fJ - z(C) [tt])’ 
I B* (ti! U, \t,, Y [ti],E, A) /I 
I 

' CF (tj, U, (f>. )' [ti], F, 4)) j = 
! 
I 

In accordance with (6.6) this means that vector U, (1,. 1. iti]. e. A) is the solution of the 
problem for a minimum 

1” It,] R*(t,) I), (ti. I’ It,l, E, A) - q (1,. ue (tz, Y Iii17 E* 6)) = (6.8) 
Inin II"' It,1 B (1,) u -L 'c (li. u)l 
C’EP 

where /'Iti = l'(t,.I-Iti],&, A) is the solution for a maximum of (6.5). This completely defines 
the step-by-step algorithm. 

Hence, when it is necessary to organize a step-by-step control which is guaranteed by 
the inequality (6.1)) one has to select a reasonably small parameter e>O and a partition- 
ing A {1,) with a fairly small step 6>0. 
(ti. t,_,l, i = 1, . 

Let the partitioning 4 {1,} contain k steps 
..,k. To calculate the control action u itI (6.7) it is necessary in the 

course of it to turn k times to the solution of the ancilliary problems (6.5) and (6.8) . Each 
of these is a problem of convex programming. 

A similar control procedure can be justified also in the case when the ancilliary problem 
of the form (6.5) is solved not for the function p (li. 2 ltil, A (~0) but already for the limit 
function ,o (fr. 2 II,]). In that case the control action u I21 = uc (1,. Y Ifi], F) = UC (ti. Y Iii]. E). f, < t __ 
l,,,. determinedbythe conditionofextremaldisplacement,doesnotdependonpartitioning A {l,). and 
is determinedonlyby the instant f, of realizationofthetransform Y Ifi], andbythe parameter e. 
Then thevector uc (ti,Y Iti]. E) willbe thevalue of the universaloptimalstrategy uc (I, Y, E). 

Note that in certain cases it is convenient when determining p (T*, Z IT,], A (Tj)) in (2.8) 
and (2.9) to select not the norm Ii 1 (.) ii of the form (2.7), but some other norm. The 
following norm often proves convenient: 

II I\,) = (11 { / 1 (0) j’))‘/* 
For instance, such a norm may be selected in the case, when the indicator y (1.7) has 

the form 
'r' = I r [61 I (G.!,) 

In that case we have in (1.7) CJ E it and J'=U, and the previous construction can be 
simplified without introd. Jcing supplementary coordinates 11 and 5. However there may appear 
in the reasoning details related to the fact that the solutions of the ancilliary problems of 
the form (6.5) may be non-unique. Hence it may be advisable also in the case of indicator y 
(6.a) for determining the vector Z"It,l to retain the complete scheme of calculations described 
above. In part of that scheme where the functions '0 and $ appear, the respective terms will, 
of course automatically disappear. 

Instead of sequencies of random quantities ii it is possible to select some probability 
process El~,ol continuous in time T with idependent increments. For instance, it is possible 
to select a standard Brownian process. It is then possible to avoid the partitioning 1 {r,), 
and the theoretical reasoning takes a mare concise form. However in the case of a continuous 

process 5lr,ol the problem of the existence of the random maximizing element l(o) proves 
to be more complicated, since the respective required martingale 1.M = .,V (l(Q)) I (i Iv. 01, T.G v < 
71 appears to be less adapted to this ancilliary problem. We stress that the difficulty 
arises in connection with the existence of a completely random vector. The maximizing value 
I- 111 = I' (1. Y ll]. E) for the vector l,that plays the part of the expectation af(1(o)) is also 
present in the selection of the continuous process :Is,w]. 

The signal q*l'] can be replaced by some other information carrier. It is, thus, possible 

to use the information sets Cl!] obtained in some way; they are composed of phase states 
compatible with the current information. 

For instance, in the case of the indicator y (6.9) the theory set forth above can be 
reformulated without altering its essence in a clear manner in terms of the sets G If1 com- 

posed of possible states sit]. The part of the program-vectors r(t, o) is transfered to the 

program-sets 
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The respective formulae are automatically rewritten by introducing in appropriate places 
support functions n(/, T, o) which are non-anticipatory on 5, = E[rj] and of sets ~T(T, w) (or 
sets with X (T. w)). In that form the respective formulae are sometimes simplified even further. 
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